Furan-2(3H)- and -2(5H)-ones. Part 6. ${ }^{1}$ Di- π-methane rearrangement of the α-substituted 4-benzylfuran-2(5H)-one system ${ }^{2}$

Osamu Muraoka, ${ }^{*, a}$ Genzoh Tanabe, ${ }^{a}$ Mié Higashiura, ${ }^{a}$ Toshie Minematsu ${ }^{a}$ and Takefumi Momose ${ }^{*, b}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka, Osaka 577, Japan
${ }^{\text {b }}$ Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

Abstract

The effect of the 'central methane' substitution on the di- π-methane rearrangement in 4-benzyl-2,5-dihydrofuran-2-ones 8a-d was investigated. Significant enhancement of efficiency in the rearrangement leading in high combined yields to two isomeric products, endo-12 and exo-12, is discussed in terms of both the substituent effects at the benzylic carbon and the restrained features of the ring-enrolled π-system. The origin of the difference in chemoselectivity compared with that of the 3-benzyl counterpart 5 where a photoarylated product 6 resulted upon photoirradiation was also investigated, and was rationalized by postulating a higher reactivity at the β-position of the enone system.

Abstract

Introduction It is well known that photoirradiation of molecules having the di- π-methane moiety, i.e., having two π-systems bound to a single sp 3 carbon, causes rearrangement to give π-substituted cyclopropanes. The reaction was termed the di- π-methane rearrangement, and intensive work on its mechanistic and other features has been reported by Zimmerman and co-workers. ${ }^{3}$

In a previous paper, we reported the regiospecific di- π methane rearrangement of β-apolignans 1 into the corresponding tetrahydrocyclopropa $[a]$ indenes 2 , and revealed that the rearrangement is common among β-apolignans irrespective of their ring substituents and that only the pendant phenyl group migrates among the three possible di- π-methane systems found in the β-apolignans. ${ }^{4}$ On the other hand, upon irradiation of 3,4-dibenzyl-2,5-dihydrofuran-2-one 3 , a system lacking the stereochemical rigidity of compounds 1 reverse selectivity of migration was observed, affording a cyclopropano lactone 4 as the main product. ${ }^{2 a, 5}$ In a further study on the photoreactivity of the aryl(butenolidyl)methane system, monobenzyl analogues, 3-benzyl-2,5-dihydrofuran-2-ones 5 ($\mathrm{R}=\mathrm{H}$, Me, Et, $\mathrm{Pr}, \mathrm{c}-\mathrm{Hex}$) were examined, where characteristic photoarylation leading to the corresponding tetrahydroindenofuranones 6 ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}, \mathrm{c}-\mathrm{Hex}$) was found to occur with the introduction of substituents on the 'central methane' carbon, ${ }^{1.6}$ and only the phenyl-substitution substrate $(5 ; R=P h)$ to result in the di- π-methane rearrangement, affording a cyclopropano lactone $7(\mathrm{R}=\mathrm{Ph})$ in moderate yield. Thus, it was of considerable interest to study the photochemical behaviour of their 4-benzyl counterparts, 4-benzyl-2,5-dihydrofuran-2-ones 8 ($\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{c}-\mathrm{Hex}, \mathrm{Ph}$), from both the quantitative and mechanistic viewpoints, in order to understand the difference in chemo- and regio-selectivity observed among these three types of benzyl-2,5-dihydrofuran-2-one 1, 3 and 5 (Scheme 1).

Results

Synthesis of 4-(α-substituted benzyl)-2,5-dihydrofuran-2-ones 8a-d and 5-phenyl-3-oxabicyclo[3.1.0]hexan-2-one 12a
4-Benzyl-2,5-dihydrofuran-2-one 8a was synthesized as follows. The selective reduction of 1 -ethyl 4-hydrogen 2-benzylidenesuccinate $9 \mathbf{a}^{7}$ with lithium aluminium hydride (LAH) at $-10-0^{\circ} \mathrm{C}$ followed by successive lactonization and isomerization ${ }^{8}$ of the resulting hydroxy acid, 3-hydroxymethyl-4-phenylbut-3-enoic acid 10a, by the action of hydrochloric acid gave the desired furanone $8 a^{9}$ in 65% overall yield from starting material 9 a.

Scheme 1 Reagents and conditions: i, $h v . c-H e x$ is cyclohexyl.

The 'central methane'-substituted analogues $\mathbf{8 b}$-d were prepared starting from the corresponding 1-ethyl 4-hydrogen 2-benzylidenesuccinates $9 \mathrm{~b}-\mathrm{d}$ in $43-61 \%$ overall yield, where isomerization of compounds $11 \mathrm{~b}-\mathrm{d}$ to compounds $\mathbf{8 b}-\mathrm{d}$ was carried out by treatment with tosic acid (PTSA) in dimethyl

a; $\mathbf{R}=\mathrm{II} ; \mathbf{b} ; \mathbf{R}=\mathrm{Me} ; \mathbf{c} ; \mathbf{R}=\mathbf{c}-\mathrm{Hex} ; \mathbf{d} ; \mathbf{R}=\mathbf{P h}$
Scheme 2 Reagents and conditions: i, $\mathrm{LiAlH}_{4} ; \mathrm{ii}, 10 \% \mathrm{HCl}$ or 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$; iii, PTSA, DMSO, $150^{\circ} \mathrm{C}$
sulfoxide (DMSO) at $150^{\circ} \mathrm{C}$, because attempted isomerization with hydrochloric acid gave a complex mixture (Scheme 2).

The IR spectra of the products 8a-d showed absorptions at $1746-1785 \mathrm{~cm}^{-1}$ and $1632-1639 \mathrm{~cm}^{-1}$ due to the α, β-unsaturated γ-lactone system. Signals at $\delta_{\mathrm{H}} 5.71-5.99$ and at $\delta_{\mathrm{C}} 115.1-118.6$, in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively, were in accord with the structure of β-substituted 2,5 -dihydrofuran- 2 -ones.
An authentic sample of 5-phenyl-3-oxabicyclo[3.1.0]hexan-2-one 12a, a product predicted to form upon photoirradiation of compound 8a, was synthesized as shown in Scheme 3. 2Phenylsuccinic acid 13 was converted into 2-phenylmaleic

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{SeO}_{2}$; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; iii, $\mathrm{PhH}, 70^{\circ} \mathrm{C}$; iv, NaBH_{4}
anhydride 14 according to the method by Hill. ${ }^{10}$ Treatment of anhydride 14 with diazomethane followed by thermal elimination of nitrogen ${ }^{11}$ from the resulting 1 -pyrazoline 15 afforded a 3:1 mixture of 1 -phenyl-3-oxabicyclo[3.1.0] hexane-2,4-dione $\mathbf{1 6}^{12}$ and 2-methyl-3-phenylmaleic anhydride $\mathbf{1 7 .}$. ${ }^{13}$ The mixture was treated, without fractionation, with sodium boranuide to give four lactones, 1 -phenyl-3-oxabicyclo-[3.1.0]hexan-2-one 7a, ${ }^{12 b .14}$ the desired lactone 12a, ${ }^{14 b} 4$ -methyl-3-phenyl-2,5-dihydrofuran-2-one $\mathbf{1 8},{ }^{9 b, 15}$ and 3-methyl-4-phenyl-2,5-dihydrofuran-2-one $\mathbf{1 9}^{16}$ in 37, 18, 10 and 7% yield from compound 15 , respectively.

The spectral properties of the major cyclopropano lactone $7 \mathbf{7}$ were in good accord with those previously reported. ${ }^{14 a}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the minor cyclopropano lactone displayed a pair of one-proton doublets of doublets at $\delta_{\mathrm{H}} 1.38 \dagger$ and $\delta_{\mathrm{H}} 1.70$ due to the cyclopropane methylene protons. Signals due to the lactonic γ-methylene moiety appeared as a pair of one-proton doubles at $\delta_{\mathrm{H}} 4.47$ and $\delta_{\mathrm{H}} 4.50$ while those of the major isomer 7a appeared as a one-proton doublet and a one-proton doublet of doublets at $\delta_{\mathrm{H}} 4.29$ and $\delta_{\mathrm{H}} 4.46$, respectively. Thus, the minor isomer was identified as the desired compound 12a.

Photoirradiation of 4-(α-substituted benzyl)-2,5-dihydrofuran-2ones 8a-d

Direct irradiation of compound $\mathbf{8 a}$ in methanol through a Pyrex filter for 12 h gave compound 12a, a photoreduced product, 4-benzyltetrahydrofuran-2-one 20, ${ }^{17}$ and a solvent adduct, 4-benzyl-4-(hydroxymethyl)tetrahydrofuran-2-one 21, in 39, 15 and 8% yield, respectively, with recovery of the starting material (33%). Additionally, formation of a trace amount of another solvent adduct, 4-benzyl-3-(hydroxymethyl)tetrahydrofuran-2one 22, was also detected. Prolonged irradiation caused the degradation of compound 12a to give a cyclopropano ester, methyl trans-2-hydroxymethyl-2-phenylcyclopropane-1-carboxylate 23, as an additional product. The photodegradation of compound 12a to ester 23 was evidenced by the independent irradiation of compound 12a in methanol. \ddagger
Acetone-sensitized irradiation of compound 8a under the same conditions as those of the run in methanol gave compounds 12a and 20, and a solvent adduct, 4-benzyl-3-(2-hydroxypropan-2-yl)tetrahydrofuran-2-one 24 in 47, 10 and 13% yield, respectively. These reactions are shown in Scheme 4.
The cyclopropano lactone 12a was identical with an authentic specimen synthesized via an alternative route, and the photoreduced product 20 with the one obtained by the hydrogenation of compound $\mathbf{8 a}$.
The IR spectrum of the methanol adduct 21 showed absorptions due to the hydroxy group and lactone carbonyl at 3450 and $1771 \mathrm{~cm}^{-1}$, respectively. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a singlet at $\delta_{\mathrm{H}} 3.54$ due to carbinol protons. A singlet at $\delta_{\mathrm{C}} 45.6$ and four triplets at $\delta_{\mathrm{C}} 36.3,39.7,64.8$ and 73.9 in the ${ }^{13} \mathrm{C}$ NMR spectrum are in accord with its assigned structure. Moreover, compound 21 displayed a peak due to the molecular ion at $m / z 206(17 \%)$ in the mass spectrum.
\dagger The assignment of the signal in a previous communication (ref. $2 a$) was found to be incorrect and was corrected on the basis of a ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY experiment in the present study.
\ddagger The formation of ester trans-23 would be attributed to the 1,5 -bond cleavage of compound 12a followed by ring closure of the ketene intermediate. The 1,5 -bond cleavage of the 3-oxabicyclo[3.1.0]hexan2 -one system to form a ketene intermediate has been reported (ref. 18), and the cyclization, though ionic, of an α-enolate of a γ, δ-epoxycarbonyl compound into the α-carbonyl-substituted cyclopropanemethanol system has been reported (ref. 19). It is reasonable that the stereoisomer of compound trans- $\mathbf{2 3}$ could not be detected, because compound 12a is found to be more stable than compound cis-23 by the experiment where compound 12a was not consumed to any extent in its acidic methanolysis.

8

endo - 12

exo 12
a; $R=H ; b ; R=M e$
$\mathrm{c} ; \mathrm{R}=\mathrm{c}-\mathrm{Hex} ; \mathrm{d} ; \mathrm{R}=\mathrm{Ph}$

21

23

24

Scheme 4 Conditions: i, $h v$

The structure of cyclopropano ester 23 was assigned on the basis of its IR band ($\mathrm{C}=\mathrm{O}$ at $1722 \mathrm{~cm}^{-1}$), ${ }^{1} \mathrm{H}$ NMR signals (cyclopropane CH_{2} at $\delta_{\mathrm{H}} 1.36$ and $1.74 \dagger$ as a pair of doublets of doublets, $\mathrm{O}=\mathrm{CCH}$ at $\delta_{\mathrm{H}} 2.10 \dagger$ as a doublet of doublets, $\mathrm{CH}{ }_{2} \mathrm{OH}$ at $\delta_{\mathrm{H}} 3.57$ and 3.80 as a pair of doublets, and OMe at $\delta_{\mathrm{H}} 3.43$ as a singlet), and MS peaks [$m / z 206\left(\mathrm{M}^{+}, 5 \%\right)$ and $\left.91(66 \%)\right]$. A small vicinal coupling constant ${ }^{20}$ of the deshielded signal at $\delta_{\mathbf{H}}$ $1.74\left(J_{\text {trans }} 5.5 \mathrm{~Hz}\right)$ due to one of the cyclopropane methylene protons suggested an inversion of the stereochemistry ${ }^{21}$ on $\mathrm{C}-1$, since in compound 12a the corresponding exo proton ($\delta_{\mathrm{H}} 1.70$) displayed a larger value ($J_{\text {cis }} 9.3 \mathrm{~Hz}$). The relative stereochemistry of compound 23 was confirmed on the basis of differential nuclear Overhauser effect (NOE) experiments, where an NOE was observed between the methine proton and one of the methylene protons on the cyclopropane ring, and also between the aromatic ortho protons and another one of the ring-methylene protons. Moreover, no NOE enhancement was detected between the methine proton and the aromatic ortho protons.

The IR spectrum of acetone adduct 24 showed absorptions due to the hydroxy group and lactone carbonyl at 3450 and $1762 \mathrm{~cm}^{-1}$, respectively. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed a pair of three-proton singlets, at $\delta_{\mathrm{H}} 0.86$ and 1.27 , due to two methyl groups attached to the sp^{3} carbon bearing a hydroxy group. A two-proton broad singlet at $\delta_{\mathbf{H}} 3.76$ corresponded to the lactonic γ-methylene moiety. However, the stereochemistry of compound 24 is not clear since the signals due to the benzylic methylene protons and the methine proton α to the carbonyl are undistinguishable in its ${ }^{1} \mathrm{H}$ NMR spectrum.

Direct irradiation of the 'central methane'-substituted systems $\mathbf{8 b}-\mathrm{d}$ in methanol afforded the corresponding products of di- π-methane rearrangement, exo- and endo-6-substituted 5-phenyl-3-oxabicyclo[3.1.0]hexan-2-ones, exo- and endo-12bd, in $77-93 \%$ yield.

Upon acetone-sensitized irradiation, the rearrangement proceeded more efficiently, affording the same products, exoand endo- $\mathbf{1 2 b} \mathbf{b}$, in a shorter reaction time. The formation of
\dagger See footnote on p. 1438.
two diastereoisomers exo- and endo- 12 may be attributed to the readily occurring photoisomerization in the bicyclo[3.1.0]hexane system, ${ }^{22}$ because compounds $\mathbf{1 2}$ showed interconversion between the isomers upon irradiation. The results of the irradiation are summarized in Table 1.

In every case, the endo-isomer was the major product, and spectral properties of the rearrangement products $12 b, 12 c$ and 12d were similar, and are suggestive of a cyclopropano lactone structure of the same type. The ${ }^{1} \mathrm{H}$ NMR spectrum of endo-12c displayed a one-proton doublet of doublets at $\delta_{\mathrm{H}} 2.42$ and a one-proton doublet of doublets at $\delta_{\mathrm{H}} 1.59$, due to two methine protons on $\mathrm{C}-1$ and $\mathrm{C}-6$, respectively. Although the coupling constant ($J_{1,6} 9.5 \mathrm{~Hz}$) observed between the two vicinal protons on the cyclopropane ring suggested their cis relationship, the relative stereochemistry was confirmed on the basis of NOE experiments. A marked NOE observed between the two methine protons on the ring and another NOE between the methine proton on C-6 and aromatic ortho protons supported the endo orientation of the cyclohexyl group.

Meanwhile, the vicinal methine protons of the exo-isomer, exo-12c, appeared at $\delta_{\mathrm{H}} 2.28$ and 1.35 , displayed a smaller coupling ($J_{1.6} 3.5 \mathrm{~Hz}$), and no NOE was observed between these two protons, supporting their trans stereochemistry.

Discussion

Among the three versions of the di- π-methane rearrangement, ${ }^{3}$ $v i z$. the divinylmethane variety, the aryl-vinylmethane type and the oxa-di- π-methane variation, ${ }^{23}$ the divinylmethane rearrangement requires substitution at the 'methane carbon' while the aryl-vinyl type does not. ${ }^{24}$ Present findings show that the efficiency of the rearrangement increases also in the case of the aryl-vinyl version with introduction of substituents on the 'central carbon'. ${ }^{25}$ Even monosubstitution on the 'central methane' carbon increased the efficiency of the rearrangement to a large extent, although a substituent effect on the central methane has mostly been demonstrated on disubstituted substrates. ${ }^{25}$

Most interestingly, contrasting photoreactivity was encountered in comparison with the case of the 3-benzyl counterpart 5, where a characteristic photocyclization took place to give the corresponding tetrahydroindenofuranone 6 in good yield. The formation of a radical at the β-position, preferred to that at the position α to the carbonyl, would be responsible for the difference in chemoselectivity observed between these two regioisomers (Scheme 5).

Fasel and Hansen ${ }^{26}$ reported the photoreaction of an allylbenzene, 1-(but-3-en-2-yl)-3,5-dimethylbenzene 25, the simplest version of the 'cental methane'-substituted arylvinyl system without any contribution by carbonyl, where the efficiency of the reaction leading to cyclopropanes 26 was apparently inferior to the present case. Thus the contribution of the carbonyl group towards the enhancement of the reactivity is apparent (see Scheme 6).

Photoirradiation of ethyl 4-methyl-4-phenylpent-2-enoate 27, an acyclic substrate similar to compound 8a, has also been reported. In this case, the di- π-methane rearrangement to yield the cyclopropano ester 28 could be effected only upon direct irradiation, but not on acetone-photosensitized irradiation. ${ }^{27}$ Hixson ${ }^{28}$ rationalized the non-occurrence of the di- π-methane reaction of the triplet excited state of compound 27 in terms of preferential dissipation of the triplet excitation energy by 'freerotor' effects (easy $E-Z$ isomerization) ${ }^{29}$ about the double bond (see Scheme 6).

Consequently, preferential reactivity at the position β to the carbonyl in the conjugated enone system controls the chemoselectivity of the photoreaction. The efficiency of the rearrangement in the present study should be ascribed to both

Table 1

Scheme 5
the effect of substitution at the 'central methane' carbon on enforcing its ready migration via radical fission and the inherent feature of the 2,5-dihydrofuran-2-one system where this alternative photoprocess ($E-Z$ isomerization) is precluded by incorporating the double bond in a furanone ring. Regioselective rearrangement of the pendant phenyl in β-apolignans 1 could be attributable to the stereoelectronic requirements. ${ }^{3}$ Further studies on the selectivity in the di- π-methane rearrangement of the aryl-butenolidyl-methane system from this viewpoint are in progress.

Experimental

Mps (Yanagimoto MP-3S micromelting point apparatus) and bps are uncorrected. IR spectra were measured on a Shimadzu IR-435 grating infrared spectrophotometer. NMR spectra were recorded on either a JEOL JNM-GSX $270\left(270 \mathrm{MHz}{ }^{1} \mathrm{H}, 67.5\right.$ $\mathrm{MHz}^{13} \mathrm{C}$) or a JEOL JNM-GSX $500\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}\right.$ ${ }^{13} \mathrm{C}$) spectrometer. Chemical shifts and coupling constants (J) are given in δ-values (ppm) and in hertz (Hz), respectively. All the NMR spectra were taken for CDCl_{3} solutions with tetramethylsilane as internal standard. Low-resolution mass and high-resolution mass spectra (electron impact) were recorded on either a Shimadzu QP 1000EX spectrometer or a JEOL JMS-HX 100 spectrometer. Column chromatography was effected over either Merck Kieselgel 60 (230-400 mesh)

Scheme 6 Conditions: i, $h v, 32.5 \mathrm{~h}$; ii, $h v$
with a pump (FMI model RP) or Merck Kieselgel 60 (70-230 mesh). Photochemical reactions, except those in a test tube, were carried out under a stream of dry, oxygen-free nitrogen, through a Pyrex filter at $25^{\circ} \mathrm{C}$ in an immersion apparatus fitted with an Ishii UV-HT 200 W high-pressure mercury lamp. All the organic extracts were dried over anhydrous magnesium sulfate prior to evaporation. Light petroleum refers to the fraction with distillation range $30-70^{\circ} \mathrm{C}$.

4-Benzyl-2,5-dihydrofuran-2-one 8a

A solution of 1-ethyl 4-hydrogen 2-benzylidenesuccinate ${ }^{7} 9 \mathbf{9}$ ($9.0 \mathrm{~g}, 38.5 \mathrm{mmol}$) in tetrahydrofuran (THF) $\left(60 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of LAH ($1.46 \mathrm{~g}, 38.4 \mathrm{mmol}$) in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The excess of hydride was decomposed with ethyl acetate ($30 \mathrm{~cm}^{3}$), and the resulting mixture was acidified with 10% hydrochloric acid to pH 2 . The mixture was heated under reflux for 8 h , and extracted with AcOEt. The extract was washed successively with aq. sodium hydrogen carbonate and brine, and evaporated to give a pale yellow oil (8.2 g), which, on column chromatography $\left(\mathrm{CHCl}_{3}\right)$, gave compound $8 \mathrm{a}^{9}(4.35 \mathrm{~g}$, 65%) as an oil, bp $157-160^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$ (Found: C, $76.0 ; \mathrm{H}$, $5.8 \% ; \mathrm{M}^{+}, 174.0686 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, $75.84 ; \mathrm{H}, 5.79 \%$; M, 174.0680); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1782,1746$ and $1639 ; \delta_{\mathrm{H}} 3.74$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$), 4.70-4.73(2 H, m), $5.81(1 \mathrm{H}, \mathrm{tt}, J 1.8$ and 1.8$)$ and $7.15-7.40(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 35.2(\mathrm{t}), 72.7$ (t), 116.6 (d), $127.4(\mathrm{~d}), 128.6$ (d), 129.0 (d), 135.5 (s), 168.9 (s) and 173.6 (s); $m / z 174\left(\mathrm{M}^{+}\right.$, 35%), 145 (11), 115 (25), 96 (100) and 91 (38).

Preparation of 4-(α-substituted benzylidene)tetrahydrofuran-2ones 11

4-(1-Phenylethylidene)tetrahydrofuran-2-one 11b. Following a method similar to that used for the reduction of compound $9 \mathbf{a}$, 1-ethyl 4-hydrogen 2-(1-phenylethylidene)succinate $9 \mathrm{~b}(7.0 \mathrm{~g}$,
$28.2 \mathrm{mmol})$ was treated with LAH ($1.1 \mathrm{~g}, 28.9 \mathrm{mmol})$. After the decomposition of the excess of hydride, the resulting mixture was acidified with 10% sulfuric acid to pH 2 , and heated under reflux for 1 h . The reaction mixture was extracted with AcOEt. Work-up and removal of the solvent gave a pale yellow oil (5.6 g), which, on column chromatography $\left(\mathrm{CHCl}_{3}\right)$, gave a product $(3.8 \mathrm{~g}, 72 \%)$ as a pale yellow semi-solid. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the product showed it to consist of a $1: 1$ mixture of compounds (E)- and (Z)-11b, mp $52-61^{\circ} \mathrm{C}$ (Found: M^{+}, 188.0837. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{M}, 188.0837$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1775 ; \delta_{\mathrm{H}} 1.98(1.5 \mathrm{H}, \mathrm{tt}, J 2.0$ and 2.0$), 2.05(1.5 \mathrm{H}, \mathrm{tt}, J 2.0$ and $2.0), 3.19(1 \mathrm{H}, \mathrm{tq}, J 2.0$ and 2.0$), 3.32(1 \mathrm{H}, \mathrm{tq}, J 2.0$ and 2.0$)$, $4.80(1 \mathrm{H}, \mathrm{tq}, J 2.0$ and 2.0$), 5.00(1 \mathrm{H}, \mathrm{tq}, J 2.0$ and 2.0$)$ and 7.10-7.38 (5 H, m); $\delta_{\mathrm{c}} 19.3 / 21.3$ (q), 33.0/33.1 (t), 71.4/71.6 (t), $125.0 / 125.1$ (s), 126.8/126.9 (d), 127.3/127.5 (d), 128.5/128.6 (d), 131.2/131.8 (s), $140.7 / 141.6(\mathrm{~s})$ and 175.5/175.6 (s); m/z 188 $\left(\mathrm{M}^{+}, 19 \%\right), 129(30), 115(27), 110$ (100) and 105 (29).

Similarly obtained were: (E)-4-[cyclohexyl(phenyl)methyl-ene]tetrahydrofuran-2-one $11 \mathrm{c} \quad\{2.8 \mathrm{~g}, 69 \%$ yield from (E)-1-ethyl 4-hydrogen 2-[cyclohexyl(phenyl)methylene]succinate $\left.9 \mathrm{c}^{1}(5.0 \mathrm{~g}, 15.8 \mathrm{mmol})\right\}$ as prisms, $\mathrm{mp} 115-116^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 79.7 ; \mathrm{H}, 7.7 \% ; \mathrm{M}^{+}, 256.1455$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.65 ; \mathrm{H}, 7.86 \% ; \mathrm{M}, 256.1463$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1777 ; \delta_{\mathrm{H}} 0.99(1 \mathrm{H}$, ddddd, $J 13.0,13.0,13.0$, 3.5 and 3.5$), 1.11(2 \mathrm{H}$, dddd, $J \quad 13.0,12.5,12.5$ and 3.5$), 1.27(2 \mathrm{H}$, ddddd, $J 13.0,13.0,13.0,3.5$ and 3.5$), 1.57-$ $1.68(3 \mathrm{H}, \mathrm{m}), 1.69-1.76(2 \mathrm{H}, \mathrm{m}), 2.22(1 \mathrm{H}$, dddd, $J 12.5,12.5$, 3.5 and 3.5), $2.84(2 \mathrm{H}, \mathrm{t}, J 2.0), 5.05(2 \mathrm{H}, \mathrm{t}, J 2.0), 6.98-7.08(2$ $\mathrm{H}, \mathrm{m})$ and $7.26-7.38(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 25.6(\mathrm{t}), 26.3(\mathrm{t}), 31.0(\mathrm{t}), 32.9$ (t), 42.2 (d), 70.5 (t), 124.7 (s), 127.1 (d), 128.2 (d), 128.4 (d), 139.4 (s), 142.2 (s) and 175.6 (s); $m / z 256\left(\mathrm{M}^{+}, 2 \%\right), 174$ (100), 129 (42) and 115 (14); and 4-(diphenylmethylene)tetra-hydrofuran-2-one $11 \mathrm{~d}[3.1 \mathrm{~g}, 77 \%$ yield from 1 -ethyl 4-hydrogen 2-(diphenylmethylene)succinate 9d ($5.0 \mathrm{~g}, 16.1 \mathrm{mmol}$)] as prisms, mp $158-159^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{30 a} 159-161^{\circ} \mathrm{C}$, lit., ${ }^{30 b} 150-152^{\circ} \mathrm{C}$).

Preparation of 4-(α-substituted benzyl)dihydrofuran-2-ones 8

4-(1-Phenylethyl)-2,5-dihydrofuran-2-one 8 b . A mixture of compound 11 b ($830 \mathrm{mg}, 4.41 \mathrm{mmol}$), PTSA ($200 \mathrm{mg}, 1.16$ $\mathrm{mmol})$ and DMSO $\left(10 \mathrm{~cm}^{3}\right)$ was heated at $150^{\circ} \mathrm{C}$ for 9 h . The reaction mixture was poured into brine, and extracted with benzene. The extract was washed with brine, and evaporated to give a pale brown oil (900 mg), which, on column chromatography (benzene), gave compound 8 b ($680 \mathrm{mg}, 82 \%$) as prisms, $\mathrm{mp} 41-42^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, $76.5 ; \mathrm{H}, 6.4 \%$; $\mathrm{M}^{+}, 188.0835 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.57 ; \mathrm{H}, 6.43 \% ; \mathrm{M}$, 188.0837); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1785,1750$ and $1633 ; \delta_{\mathrm{H}} 1.58$ $(3 \mathrm{H}, \mathrm{d}, J 7.5), 3.79(1 \mathrm{H}$, br q, $J 7.5), 4.57(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and 2.0$)$, $4.67(1 \mathrm{H}$, dd, $J 17.5$ and 2.0$), 5.92(1 \mathrm{H}, \mathrm{td}, J 2.0$ and 2.0$), 7.15-$ $7.19(2 \mathrm{H}, \mathrm{m}), 7.25-7.31(1 \mathrm{H}, \mathrm{m})$ and $7.35-7.37(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 19.9$ (q), 39.9 (d), 72.2 (t), 115.1 (d), 127.0 (d), 127.5 (d), 129.0 (d), $141.5(\mathrm{~s}), 173.65(\mathrm{~s})$ and $173.72(\mathrm{~s}) ; m / z 188\left(\mathrm{M}^{+}, 15 \%\right), 129(24)$, 115 (24), 110 (100) and 105 (24).

Similarly prepared were: 4-[cyclohexyl(phenyl)methyl]-2,5-dihydrofuran-2-one $8 \mathrm{c}[310 \mathrm{mg}, 62 \%$ yield from $11 \mathrm{c}(500 \mathrm{mg}$, 1.95 mmol)]: oil, bp $205-207^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$ (Found: $\mathrm{C}, 79.8 ; \mathrm{H}$, $7.9 \% ; \mathrm{M}^{+}, 256.1450 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.65 ; \mathrm{H}, 7.86 \%$; M, 256.1463); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1784,1748$ and $1632 ; \delta_{\mathrm{H}}$ $0.78-0.86(1 \mathrm{H}, \mathrm{m}), 0.94-1.03(1 \mathrm{H}, \mathrm{m}), 1.09-1.34(3 \mathrm{H}, \mathrm{m})$, $1.42-1.50(1 \mathrm{H}, \mathrm{m}), 1.62-1.69(2 \mathrm{H}, \mathrm{m}), 1.74-1.80(1 \mathrm{H}, \mathrm{m})$, 1.82-1.95 ($2 \mathrm{H}, \mathrm{m}$), 3.34 (1 H, br d, J 10.0), $4.65(2 \mathrm{H}, \mathrm{d}, J 2.0)$, $5.99(1 \mathrm{H}, \mathrm{td}, J 2.0$ and 2.0$), 7.10-7.15(2 \mathrm{H}, \mathrm{m})$ and $7.24-7.37$ ($3 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 25.9(\mathrm{t}), 26.0(\mathrm{t}), 26.1$ (t), $31.0(\mathrm{t}), 32.0(\mathrm{t}), 40.6(\mathrm{~d})$, 53.0 (d), 72.3 (t), 115.4 (d), 127.4 (d), 128.1 (d), 128.9 (d), 139.1 (s), 171.9 (s) and 173.8 (s); m/z 256 ($\mathrm{M}^{+}, 2 \%$), 174 (100), 129 (40) and 115 (14); and 4-benzhydryl-2,5-dihydrofuran-2-one 8d [363 $\mathrm{mg}, 79 \%$ yield from $11 \mathrm{~d}(460 \mathrm{mg}, 1.84 \mathrm{mmol})]$: needles, mp
$75.5-76^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, $81.5 ; \mathrm{H}, 5.7 \% ; \mathrm{M}^{+}$, 250.0969. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.58 ; \mathrm{H}, 5.64 \% ; \mathrm{M}, 250.0994$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1783,1751$ and $1633 ; \delta_{\mathrm{H}} 4.75(2 \mathrm{H}, \mathrm{d}, J 2.0)$, $5.05(1 \mathrm{H}, \mathrm{br}$ s), $5.71(1 \mathrm{H}, \mathrm{td}, J 2.0$ and 2.0$), 7.15-7.20(4 \mathrm{H}, \mathrm{m})$ and $7.27-7.38(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 51.5$ (d), 72.7 (t), 118.6 (d), 127.6 (d), 128.4 (d), 129.0 (d), 139.4 (s), 171.7 (s) and 173.3 (s); $m / z 250$ $\left(\mathrm{M}^{+}, 96 \%\right), 205(67), 191(42), 172$ (100), 165 (53) and 115 (63).

Cycloaddition of diazomethane with 2-phenylmaleic anhydride 14

An ethereal solution of diazomethane was added to a stirred suspension of compound $14^{10}(2.0 \mathrm{~g}, 11.5 \mathrm{mmol})$ in diethyl ether ($20 \mathrm{~cm}^{3}$). Soon after the suspension had become a clear solution, the formation of precipitates was observed. The precipitates were filtered off, and the collected solid was washed with diethyl ether to give the 1 -pyrazoline $15(1.96 \mathrm{~g}, 79 \%)$ as a powder, $\mathrm{mp} 70-71^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 3.73(1 \mathrm{H}$, dd, $J 9.5$ and 2.0), 5.10 (1 H , dd, $J 18.5$ and 9.5), 5.44 (1 H , dd, $J 18.5$ and 2.0) and $7.44-7.49(5 \mathrm{H}, \mathrm{m})$. Gradual decomposition of compound 15 into anhydrides 16 and 17 accompanied by the evolution of nitrogen was observed in CDCl_{3} at room temperature.

Pyrolysis of the 1-pyrazoline 15

A solution of compound $15(1.96 \mathrm{~g}, 9.1 \mathrm{mmol})$ in benzene (50 cm^{3}) was heated at $70^{\circ} \mathrm{C}$ until evolution of nitrogen had ceased. Removal of the solvent gave a crude product (1.9 g) as an oil, which was used in the next step without purification. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the oil showed it to consist of a $3: 1$ mixture of 1-phenyl-3-oxabicyclo[3.1.0]hexane-2,4-dione 16^{12} and 2-methyl-3-phenylmaleic anhydride $17,{ }^{13}$ respectively.

A mixture of anhydrides 16 and $17: \delta_{\mathrm{H}} 2.00(0.75 \mathrm{H}$, dd, $J 8.5$ and 5.0$), 2.09(0.75 \mathrm{H}$, dd, $J 5.0$ and 3.5$), 2.32(0.75 \mathrm{H}, \mathrm{s}), 2.99$ $(0.75 \mathrm{H}$, dd, $J 8.5$ and 3.5$)$ and $7.28-7.78(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 10.7(\mathrm{q})$, 24.1 (t), 27.4 (d), 37.3 (s), 128.2 (s), 128.7 (d), 128.9 (d), 129.0 (d), 129.1 (d), 129.3 (d), 129.6 (s), 130.9 (d), 138.7 (s), 139.8 (s), 164.8 (s), 166.1 (s), 167.2 (s) and 168.6 (s). The two anhydrides were separated by GC-MS; for the major anhydride 16 (Found: $\mathrm{M}^{+}, 188.0454 . \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$ requires $\mathrm{M}, 188.0474$); $m / z 188\left(\mathrm{M}^{+}\right.$, 37%), 144 (36) and 115 (100). For the minor anhydride 17 (Found: $\mathrm{M}^{+}, 188.0501$); $m / z 188\left(\mathrm{M}^{+}, 64 \%\right)$ and $116(100)$.

Sodium boranuide reduction of anhydrides 16 and 17

 A solution of anhydrides 16 and $17(1.9 \mathrm{~g})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of sodium boranuide $(600 \mathrm{mg}$, $15.8 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After addition of water $\left(10 \mathrm{~cm}^{3}\right)$, the mixture was acidified with 10% hydrochloric acid to pH 2 . The resulting mixture was stirred at room temperature for 5 h , and extracted with diethyl ether. The extract was washed with brine, and evaporated to give an oil (1.75 g), which, on column chromatography [hexane-diethyl ether ($5: 1$)], gave 1 -phenyl-3-oxabicyclo[3.1.0]hexan-2-one 7a ($584 \mathrm{mg}, 37 \%$), 5-phenyl-3-oxabicyclo[3.1.0]hexan-2-one 12a ($284 \mathrm{mg}, 18 \%$), 4-methyl-3-phenyl-2,5-dihydrofuran-2-one $18(157 \mathrm{mg}, 10 \%)$, and 3-methyl-4-phenyl-2,5-dihydrofuran-2-one 19 ($110 \mathrm{mg}, 7 \%$).1-Phenylbicyclic lactone 7 a : prisms, mp $23-25^{\circ} \mathrm{C}$ (from diethyl ether) (lit., ${ }^{14 a} 49-50^{\circ} \mathrm{C}$); bp $115-116^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$ (lit., ${ }^{14 a} 119^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) (Found: $\mathrm{M}^{+}, 174.0659 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{M}, 174.0681) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1765 ; \delta_{\mathrm{H}} 1.37(1 \mathrm{H}$, dd, $J 4.8$ and 4.8$), 1.65(1 \mathrm{H}$, dd, $J 7.6$ and 4.8$), 2.56(1 \mathrm{H}$, ddd, J $7.6,4.8$ and 4.8$), 4.29(1 \mathrm{H}, \mathrm{d}, J 9.5), 4.46(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 4.8$)$ and $7.25-7.46(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 20.1(\mathrm{t}), 25.1(\mathrm{~d}), 31.7(\mathrm{~s}), 68.0(\mathrm{t})$, 127.7 (d), 128.3 (d), 128.6 (d), 134.1 (s) and 175.9 (s); $m / z 174$ ($\mathrm{M}^{+}, 100 \%$), 144 (55), 129 (41) and 115 (90).

5-Phenylbicyclic lactone 12a: waxy solid, mp $28-29^{\circ} \mathrm{C}$; bp $125-127^{\circ} \mathrm{C} / 0.001 \mathrm{mmHg}$ (Found: $\mathrm{M}^{+}, 174.0659$); $v_{\max }(\mathrm{CH}-$ $\left.\mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 1768 ; \delta_{\mathrm{H}} 1.38(1 \mathrm{H}$, dd, $J 4.8$ and 3.5$), 1.70(1 \mathrm{H}$, dd, $J 9.3$ and 4.8), 2.32 ($1 \mathrm{H}, \mathrm{dd}, J 9.3$ and 3.5), 4.47 ($1 \mathrm{H}, \mathrm{d}, J 9.0$),
$4.50(1 \mathrm{H}, J 9.0)$ and $7.24-7.42(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 19.0(\mathrm{t}), 24.6(\mathrm{~d})$, 33.6 (s), 73.4 (t), 127.8 (d), 127.9 (d), 128.8 (d), 136.5 (s) and $175.6(\mathrm{~s}) ; m / z 174\left(\mathrm{M}^{+}, 56 \%\right), 145(50), 129(53), 115(100)$ and 91 (28).

The 4-methylbutenolide 18: needles, $\mathrm{mp} 83-84^{\circ} \mathrm{C}$ (from diisopropyl ether) (lit., ${ }^{15 a} 84-86^{\circ} \mathrm{C}$; lit., ${ }^{15 b} 84.5-86^{\circ} \mathrm{C}$).

The 3-methylbutenolide 19: needles, mp $122.5-123^{\circ} \mathrm{C}$ (from diisopropyl ether) (lit., ${ }^{16 a} 121-122^{\circ} \mathrm{C}$; lit., ${ }^{16 \mathrm{~b}} \quad 115-117^{\circ} \mathrm{C}$; lit., ${ }^{16 c} 120-122^{\circ} \mathrm{C}$).

Catalytic hydrogenation of compound 8a

A suspension of 5% palladium on carbon (50 mg) in ethanol (5 cm^{3}) was pre-equilibrated with hydrogen. A solution of compound 8a ($100 \mathrm{mg}, 0.57 \mathrm{mmol}$) in ethanol ($5 \mathrm{~cm}^{3}$) was added, and the mixture was hydrogenated at room temp. and atmospheric pressure until the uptake of hydrogen ceased. The catalyst was filtered off, and the filtrate was evaporated to give an oil (101 mg), which, on distillation at reduced pressure, gave 4-benzyltetrahydrofuran-2-one 20 ($100 \mathrm{mg}, 99 \%$) as an oil, bp $158-160^{\circ} \mathrm{C}(5 \mathrm{mmHg})\left[\mathrm{lit}. .{ }^{17 \mathrm{~b}} 162-163^{\circ} \mathrm{C}(6 \mathrm{mmHg})\right]$.

Photolysis of 4-(α-substituted benzyl)-2,5-dihydrofuran-2-ones 8
General procedure. In the presence of 1,4 -diazabicyclo[2.2.2] octane§ (DABCO) ($40 \mathrm{mg}, 0.35 \mathrm{mmol}$) a solution of compound $8(100 \mathrm{mg})$ was irradiated in methanol $\left(200 \mathrm{~cm}^{3}\right)$ or acetone ($200 \mathrm{~cm}^{3}$) (time and product distribution are given in Table 1). Products were isolated by column chromatography of the residue obtained after removal of the solvent. Column chromatography of the residue from compound 8a was carried out by using hexane-diethyl ether ($1: 1$) as eluent. Solvent system used for elution of the residue from substrates $\mathbf{8 b - 8 d}$ was hexane-acetone ($20: 1$).

Photolysis of compound 8a in methanol. A cyclopropano lactone 12a, a photoreduced product 20, 4-benzyl-4-(hydroxy-methyl)tetrahydrofuran-2-one 21 and methyl trans-2-(hydroxymethyl)-2-phenylcyclopropane-1-carboxylate 23 were obtained from compound 8a, and formation of 4-benzyl-3-(hydroxymethyl)tetrahydrofuran-2-one $\mathbf{2 2}$ was detected by GCMS analysis. A small amount of the starting material was also recovered. Compound 12a was identical with the authentic specimen synthesized via the alternative route, and compound 20 with the compound obtained by the hydrogenation of compound 8a, respectively.

The 4-(hydroxymethyl)tetrahydrofuranone 21: oil, bp 135$137^{\circ} \mathrm{C} / 0.02 \mathrm{mmHg}$ (Found: $\mathrm{M}^{+}, 206.0916 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{M}, 206.0943) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450$ and $1771 ; \delta_{\mathrm{H}} 1.81(1 \mathrm{H}, \mathrm{br}$ s , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.42(1 \mathrm{H}, \mathrm{d}, J 17.5), 2.48(1 \mathrm{H}, \mathrm{d}, J$ $17.5), 2.83(1 \mathrm{H}, \mathrm{d}, J 13.0), 2.90(1 \mathrm{H}, \mathrm{d}, J 13.0), 3.54(2 \mathrm{H}, \mathrm{br} \mathrm{s}-$ like), 4.16 ($1 \mathrm{H}, \mathrm{d}, J 9.0$), $4.22(1 \mathrm{H}, \mathrm{d}, J 9.0) 7.13-7.18(2 \mathrm{H}, \mathrm{m})$ and 7.23-7.41 (3 H, m); $\delta_{\mathrm{c}} 36.3(\mathrm{t}), 39.7(\mathrm{t}), 45.6(\mathrm{~s}), 64.8(\mathrm{t}), 73.9$ (t), 127.1 (d), 128.6 (d), 130.0 (d), 136.1 (s) and 176.7 (s); $m / z 206$ $\left(\mathrm{M}^{+}, 17 \%\right), 188$ (5), 129 (11), 115 (16) and 91 (100).

The methyl cyclopropano ester 23: oil, bp $98-100^{\circ} \mathrm{C} / 0.008$ mmHg (Found: $\mathrm{M}^{+}, 206.0925$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430$ and 1722 ; $\delta_{\mathrm{H}} 1.36(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 5.0$), 1.64(1 \mathrm{H}$, br s, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $1.74(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 5.0$), 2.10(1 \mathrm{H}$, dd, $J 8.0$ and 5.5$), 3.43(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{d}, J 11.0), 3.80(1 \mathrm{H}, \mathrm{d}$, $J 11.0)$ and 7.18-7.42 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 16.1(\mathrm{t}), 24.5(\mathrm{~d}), 37.8(\mathrm{~s}), 51.6$ (q), 70.0 (t), 127.5 (d), 128.5 (d), 129.8 (d), 137.8 (s) and 171.3 (s); $m / z 206\left(\mathrm{M}^{+}, 5 \%\right), 174$ (67), 188 (7), 129 (53), 120 (100), 115 (60) and 91 (66).
§ Although oxygen in the nitrogen gas was supposed to have been washed out by passage of the gas through an alkaline pyrogallol solution, DABCO was added in order to avoid the influence of singlet oxygen (cf. ref. 31) which might be generated from any remaining oxygen.

The 3-(hydroxymethy)tetrahydrofuranone 22 (Found: M^{+}, 206.0914); $m / z 206\left(\mathrm{M}^{+}, 4 \%\right), 142(35), 129$ (12), 117 (39) and 91 (100).

Photolysis of compound $\mathbf{8 b}$ in methanol. A $10: 1$ mixture (by ${ }^{1} \mathrm{H}$ NMR spectroscopy) of endo-6-methyl-5-phenyl-3-oxabicyclo[3.1.0] hexan-2-one endo-12b and its exo-isomer exo-12b was obtained from substrate 8b.
A mixture of endo- and exo-bicyclic lactone endo- and exo-12b (Found: $\mathrm{M}^{+}, 188.0829 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{M}, 188.0837$); δ_{H} $1.01(0.27 \mathrm{H}, \mathrm{t}, J 6.5), 1.30(2.73 \mathrm{H}, \mathrm{d}, J 6.5), 1.64(0.09 \mathrm{H}, \mathrm{qd}, J$ 6.5 and 3.0$), 1.89(0.91 \mathrm{H}, \mathrm{dq}, J 9.0$ and 6.5$), 2.12(0.09 \mathrm{H}$, dd, $J 3.0$ and 0.8$), 2.45(0.91 \mathrm{H}$, dd, $J 9.0$ and 1.0$), 4.25(0.09 \mathrm{H}, \mathrm{d}, J$ $9.0), 4.46(0.91 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10.0), 4.49(0.09 \mathrm{H}, \mathrm{dd}, J 9.0$ and 0.8$)$, $4.52(0.91 \mathrm{H}, \mathrm{d}, J 10.0)$ and $7.18-7.40(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}$ (minor isomer/major isomer) 8.0/8.1 (q), 26.4/23.8 (d), 29.7/29.9 (d), 38.7/38.0 (s), 74.3/70.0 (t), 127.5 (d), 128.0/127.8 (d), 129.0/128.9 (d), 134.2/138.1 (s) and 175.6/174.2 (s); m/z 188 $\left(\mathrm{M}^{+}, 22 \%\right), 144$ (44), 129 (100), 115 (26) and 91 (18).

Photolysis of compound 8c in methanol. endo-6-Cyclohexyl-5-phenyl-3-oxabicyclo[3.1.0]hexan-2-one endo-12c and its exoisomer exo-12c were obtained from substrate 8 c .
endo-Bicyclic lactone endo-12c: prisms, $\mathrm{mp} 53-54^{\circ} \mathrm{C}$ (from hexane) (Found: C, 79.6; H, 7.9\%; $\mathrm{M}^{+}, 256.1462 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ requires C, $79.65 ; \mathrm{H}, 7.86 \%$; $\mathrm{M}, 256.1463$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1763 ; \delta_{\mathrm{H}} 1.16-1.40(6 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 9.5$)$, $1.66-$ $1.95(5 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 1.0$), 4.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 10.0), 4.47 ($1 \mathrm{H}, \mathrm{d}, J 10.0$) and 7.20-7.37 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 25.7$ (t), 25.8 (t), 26.1 (t), 29.2 (d), 32.5 (t), 32.6 (d), 33.2 (t), 35.6 (d), 38.6 (s), 70.8 (t), 127.8 (d), 128.0 (d), 128.9 (d), 138.3 (s) and 174.5 (s); $m / z 256\left(\mathrm{M}^{+}, 2 \%\right), 174(29), 161,(100), 129(19)$ and 91 (11).
exo-Bicyclic lactone exo-12c: prisms, mp $156-158^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 79.6; H, 7.85\%; $\mathbf{M}^{+}, 256.1462$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1772$ and $1758 ; \delta_{\mathrm{H}} 0.66(1 \mathrm{H}$, ddddd, $J 10.5$, $10.5,10.5,3.5$ and 3.5$), 0.80-0.90(1 \mathrm{H}, \mathrm{m}), 0.98-1.28(4 \mathrm{H}, \mathrm{m})$, $1.35(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 3.5$), 1.49-1.80(5 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{dd}$, $J 3.5$ and 1.0), $4.26(1 \mathrm{H}, \mathrm{d}, J 9.0), 4.57(1 \mathrm{H}$, dd, $J 9.0$ and 1.0$)$ and 7.15-7.25(5 H, m); $\delta_{\mathrm{C}} 25.6(\mathrm{t}), 25.7(\mathrm{t}), 26.0(\mathrm{t}), 26.6(\mathrm{~d}), 32.1$ (t), 32.5 (t), 36.3 (d), 38.2 (s), 39.1 (d), 74.2 (t), 127.9 (d), 128.2 (d), 128.7 (d), 134.7 (s) and 175.6 (s); $m / z 256$ ($\mathrm{M}^{+}, 2 \%$), 174 (13), 161 (100), 129 (13) and 91 (10).

Photolysis of compound 8d in methanol. endo-5,6-Diphenyl-3-oxabicyclo[3.1.0]hexan-2-one endo-12d and its exo-isomer exo12d were obtained from substrate 8 d .
endo-Bicyclic lactone endo-12d: prisms (lit., ${ }^{32}$ oil), mp $90-$ $92^{\circ} \mathrm{C}$ (from hexane-acetone).
exo-Bicyclic lactone exo-12d: prisms, mp $126.5-127.5^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{32} 124-125^{\circ} \mathrm{C}$).

Photolysis of compound 8a in acetone. The cyclopropano lactone 12a, 4-benzyl-3-(2-hydroxypropan-2-yl)tetrahydro-furan-2-one 24 and the photoreduced product 20 were obtained from substrate 8a. A small amount of the starting material was also recovered. Compound 12a was identical with the authentic specimen synthesized via the alternative route, and compound 20 with the authentic sample obtained by hydrogenation of compound 8a.

The (2-hydroxypropan-2-yl)tetrahydrofuranone 24: prisms, $\mathrm{mp} 106-107^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, $71.9 ; \mathrm{H}$, 7.85. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.77 ; \mathrm{H}, 7.74 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 3450$ and 1762; $\delta_{\mathrm{H}} 0.86(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.44(1 \mathrm{H}$, br s, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $2.52-2.62(1 \mathrm{H}, \mathrm{m}), 2.72-2.82$ ($3 \mathrm{H}, \mathrm{m}$), 3.76 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$) and 7.25-7.40 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 21.7$ (q), 28.2 (q), 34.3 (t), 47.5 (d), 48.9 (d), 66.3 (t), 87.4 (s), 127.5 (d), 128.5 (d), 128.8 (d), 140.0 (s) and 175.0 (s); $m / z 219$ ($\mathrm{M}^{+}-15$, 1%), 204 (33), 145 (25), 117 (100) and 91 (25).

Photolysis of compound 8b in acetone. Bicycle endo-12b, contaminated with a trace amount of its diastereoisomer exo12b (by ${ }^{1} \mathrm{H}$ NMR spectroscopy), was obtained from substrate 8b.

Photolysis of compound 8 c in acetone. Bicycle endo-12c and its diastereoisomer exo-12c were obtained from substrate 8c.

Photolysis of compound 8d in acetone. Bicycle endo-12d and its diastereoisomer exo-12d were obtained from substrate $\mathbf{8 d}$.

Photolysis of compound 12a in methanol

A mixture of compound 12 a ($42 \mathrm{mg}, 0.24 \mathrm{mmol}$), DABCO ($16 \mathrm{mg}, 0.14 \mathrm{mmol}$) and methanol ($80 \mathrm{~cm}^{3}$) was irradiated for 23 h to give a pale yellow oil (65 mg), which, on column chromatography [hexane-diethyl ether ($1: 1$)], gave compound $23(4.6 \mathrm{mg}, 9 \%)$ and the starting material 12 a ($7 \mathrm{mg}, 17 \%$ recovery).

Attempted acidic methanolysis of compound 12a

A mixture of compound $\mathbf{1 2 a}(7.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, PTSA (5 mg , 0.03 mmol) and methanol ($2 \mathrm{~cm}^{3}$) was heated under reflux for 5 h . The reaction mixture was poured into aq. sodium hydrogen carbonate ($10 \mathrm{~cm}^{3}$), and extracted with chloroform. Removal of the solvent resulted in the complete recovery of the starting material.

Photoisomerization of bicycle exo-12d

Under argon, a mixture of bicycle exo-12d ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) and degassed acetone ($1 \mathrm{~cm}^{3}$) in a Pyrex test tube was irradiated for 5 h . Removal of the solvent left an oil (10 mg) which was a 2.8:1 diastereoisomeric mixture of bicycles exo-12d and endo12d, respectively (by ${ }^{1} \mathrm{H}$ NMR spectroscopy).

Photoisomerization of compound endo-12d

Compound endo-12d ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) was irradiated for 5 h under the same conditions as those described for the photoirradiation of its diastereoisomer exo-12d, to give an oil, which was a 1:3.4 mixture of exo-12d and endo-12d, respectively (by ${ }^{1} \mathrm{H}$ NMR spectroscopy).

Acknowledgements

We are grateful to the Environmental Science Research Institute of Kinki University for financial support. This study was also supported by a Grant-in-Aid for Science Research from the Japan Private School Promotion Foundation.

References

1 Part 5, O. Muraoka, G. Tanabe, K. Sano, T. Minematsu and T. Momose, J. Chem. Soc., Perkin Trans. I, 1994, 1833.

2 Preliminary communications of part of this work have appeared: (a) T. Momose, G. Tanabe, H. Tsujimori, M. Higashiura, I. Imanishi and K. Kanai, Heterocycles, 1989, 29, 257; (b) O. Muraoka, G. Tanabe and T. Momose, Heterocycles, 1990, 31, 1589.

3 S. S. Hixon, P. S. Mariano and H. E. Zimmerman, Chem. Rev., 1973, 73, 531; H. E. Zimmerman, in Rearrangements in Ground and Excited States, ed. P. De Mayo, Academic Press, New York, 1980, vol. 3, p. 131; in Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1991, vol. 11, p. 1.
4 T. Momose, K. Kanai and T. Nakamura, Heterocycles, 1976, 4, 1481; Chem. Pharm. Bull., 1978, 26, 1592.
5 T. Momose, G. Tanabe, H. Tsujimori and O. Muraoka, Chem. Pharm. Bull., 1992, 40, 2525.
6 O. Muraoka, G. Tanabe, K. Sano and T. Momose, Heterocycles, 1992, 34, 1093.

7 H. Stobbe, Ber. Dtsch. Chem. Ges., 1908, 41, 4350
8 A. Hassner and T. C. Mead, Tetrahedron, 1964, 20, 2201; S. N. Lewis and T. L. Popper, Tetrahedron, 1967, 23, 4197.
9 (a) J. E. McMurry and S. F. Donovan, Tetrahedron Lett., 1977, 2869; (b) Y. Inoue, T. Hibi, M. Satake, Y. Kawashima and H. Hashimoto, Nippon Kagaku Kaishi, 1982, 276 (Chem. Abstr., 1982, 96, 217611s); (c) T. Kametani, T. Katoh, M. Tsubuki and T. Honda, Chem. Pharm. Bull., 1985, 33, 61.

10 R. K. Hill, J. Org. Chem., 1961, 26, 4745.
11 R. Clinging, F. M. Dean and L. E. Houghton, J. Chem. Soc., Perkin Trans. 1, 1974, 66; D. Wendish, in Methoden der Organischen Chemie, ed. E. Muller, Georg Thieme Verlag, Stuttgart, Band IV/3, p. 50 .

12 (a) G. Bonavent, M. Causse, M. Guitard and R. F.-Jullien, Bull. Soc. Chim. Fr., 1964, 10, 2462; (b) C. Berrier, B. Bonnaud, J. F. Patoiseau and D. Bigg, Tetrahedron, 1991, 47, 9629.
13 E. K. Fields, S. J. Behrend, S. Meyerson, M. L. Winzenburg, B. R. Ortega and H. K. Hall, Jr., J. Org. Chem., 1990, 55, 5165; M. S. Newman and W. M. Stalick, J. Org. Chem., 1973, 38, 3386.

14 (a) G. Mouzin, H. Cousse and B. Bonnaud, Synthesis, 1978, 304; (b) B. Bonnaud, F. Calmel, J.-F. Patoiseau, N.-T. N'guyen and H. Cousse, J. Chromatogr., 1985, 318, 398.

15 (a) P. Raap, C. G. Chin and R. G. Micetich, Can. J. Chem., 1971, 49, 2143; (b) F. W. J. Demnitz, Tetrahedron Lett., 1989, 30, 6109.
16 P. S. Steyn, W. J. Conradie, C. F. Garbers and M. J. de Vries, J. Chem. Soc., 1965, 3075; (b) S. A. M. T. Hussain, W. D. Ollis, C. Smith and J. F. Stoddart, J. Chem. Soc., Perkin Trans. 1, 1975, 1480; (c) J. Kagan, D. A. Agdeppa, Jr., S. P. Singh, D. A. Mayers, C. Boyajian, C. Poorker and B. E. Firth, J. Am. Chem. Soc., 1976, 98, 4581 .
17 (a) T. W. Flechtner, J. Org. Chem., 1977, 42, 901; (b) J. Rothe and H. Zimmer, J. Org. Chem., 1959, 24, 586.

18 P. C. M. van Noort and H. Cerfontain, J. Chem. Soc., Perkin Trans. 2, 1979, 249.
19 L. Dechoux and E. Doris, Tetrahedron Lett., 1994, 35, 2017; L. Dechoux, E. Doris, L. Jung and J. F. Stambach, Tetrahedron Lett., 1994, 35, 5633.
20 D. G. Morris, in The Chemistry of the Cyclopropyl Group, ed Z. Rappoport, Wiley, New York, 1987, p. 101.

21 H. E. Zimmerman and R. W. Binkley, Tetrahedron Lett., 1985, 26, 5859.

22 P. C. M. van Noort and H. Cerfontain, J. Chem. Soc., Perkin Trans. 2, 1978, 757.
23 R. S. Givens and W. F. Oettle, J. Chem. Soc., Chem. Commun., 1969, 1164; W. G. Dauben, M. S. Kellogg, J. I. Seeman and W. A. Spitzer, J. Am. Chem. Soc., 1970, 92, 1786.

24 H. E. Zimmerman, M. G. Steinmetz and C. L. Kreil, J. Am. Chem. Soc., 1978, 100, 4146.
25 H. E. Zimmerman, R. J. Boettcher and W. Braig, J. Am. Chem. Soc., 1973, 95, 2155; H. E. Zimmerman and J. A. Pincock, J. Am. Chem. Soc., 1973, 95, 2957.
26 J.-P. Fasel and H.-J. Hansen, Chimia, 1981, 35, 9.
27 D. DeKeukeleire, E. C. Sanford and G. S. Hammond, J. Am. Chem. Soc., 1973, 95, 7904.
28 S. S. Hixson and J. C. Tausta, Tetrahedron Lett., 1974, 2007.
29 H. E. Zimmerman and P. S. Mariano, J. Am. Chem. Soc., 1969, 91, 1718.

30 (a) H. Matsuda, N. Ozawa and S. Ohki, Yakugaku Zasshi, 1975, 95, 190 (Chem. Abstr., 1975, 83, 42780y); (b) T. Kato, M. Sato and Y. Kitagawa, Chem. Pharm. Bull., 1975, 23, 365.

31 C. Ouannès and T. Wilson, J. Am. Chem. Soc., 1968, $90,6527$.
32 T. E. Nalesnik, J. G. Fish, S. W. Horgan and M. Orchin, J. Org. Chem., 1981, 46, 1987.

Paper 4/06652I
Received 1st November 1994
Accepted 21st December 1994

